Paleoclimatic conditions during the "warm Pliocene" interval (~4.1–3.2 Ma) in the eastern Mediterranean (Cyprus): a combined alkenone and calcareous nannofossil study

Maria Athanasiou
National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Panepistimioupolis, 157 84 Athens, Greece; mairyatha@hotmail.com

Ioanna Bouloubassi
Université Pierre et Marie Curie-CNRS-IRD-MNHN, LOCEAN/IPSL, 75252 Paris, Cedex 05, France; Ioanna.Bouloubassi@locean-ipsl.upmc.fr

Alexandra Gogou
Hellenic Centre for Marine Research, Institute of Oceanography, 190 13 Anavyssos, Attiki, Greece; agogou@hcmr.gr

Vincent Klein
Université Pierre et Marie Curie-CNRS-IRD-MNHN, LOCEAN/IPSL, 75252 Paris, Cedex 05, France; vklod@locean-ipsl.upmc.fr

Margarita D. Dimiza
National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Panepistimioupolis, 157 84 Athens, Greece; mdimiza@geol.uoa.gr

Constantine Parinos
Hellenic Centre for Marine Research, Institute of Oceanography, 190 13 Anavyssos, Attiki, Greece; ksparinos@hcmr.gr

Elisavet Skampa
National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Panepistimioupolis, 157 84 Athens, Greece; skampaelisavet@gmail.com

Maria V. Triantaphyllou
National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Panepistimioupolis, 157 84 Athens, Greece; mtriant@geol.uoa.gr

The Pissouri south section (PSS) on the island of Cyprus is correlated with calcareous nannofossil biozones MNN14/15 and MNN16 and is astronomically dated between ~4.1–3.25 Ma. Alkenone and nannofossil data from the PSS provided a detailed description of the paleoclimatic and paleoenvironmental conditions during this interval in the eastern Mediterranean. The cyclical lithologic alternations between the organic-rich laminated layers and grey marls of the PSS correspond to the Earth’s orbital precession and reflect the deposition of sapropels in the area. These sapropel events took place under conditions of increased sea surface temperature (SST), enhanced water column stratification, and development of a productive deep chlorophyll maximum (DCM), as evidenced by the dominance of Florisphaera profunda (Athanasiou et al., 2015, 2017). Such conditions are triggered by freshwater discharges from the North African margin due to insolation-driven intensification of the African monsoon. The absence of F. profunda in Pliocene sapropels from the central Mediterranean highlights the sensitive response of the eastern basin to freshwater perturbations. Comparisons between alkenone and calcareous nannofossil assemblage patterns indicate that Pseudoemiliania lacunosa is the main alkenone producer in sapropel layers, although Reticulofenestra spp. contributions should not be overlooked.

This first Pliocene alkenone-SST record for the eastern Mediterranean documents the “warm Pliocene” period (~4.1–3.25 Ma), which is characterized by a mean SST of about 26°C. Distinct SST minima at ~3.9 Ma, 3.58 Ma, and between 3.34–3.31 Ma correspond to the MIS GI16, MIS MG12, and MIS M2 global cooling episodes, which occurred before the onset of Northern Hemisphere glaciation. Our findings imply that the peak of the MIS M2 cooling in the eastern Mediterranean may be up to ~40 kyr older than benthic stable oxygen isotope records have indicated.

References