Spatial and temporal variability in coccolithophore abundance and distribution in the NW Iberian Margin

Blanca Ausín
Universidad de Salamanca, Departamento de Geología, Facultad de Ciencias, 37008 Salamanca, Spain; ETH Zurich, Department of Earth Sciences, 8092 Zurich, Switzerland; blanca.ausin@erdw.ethz.ch

José-A. Flores
Universidad de Salamanca, Departamento de Geología, Facultad de Ciencias, 37008 Salamanca, Spain; flores@usal.es

Diana Zúñiga
University of Vigo, Applied Physics Department, E-36310 Vigo, Spain; Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), E-36208, Vigo, Spain; diana.zuniga@uvigo.es

Catarina Cavaleiro
Instituto Português do Mar e da Atmosfera (IPMA), Div. Geologia e Georecursois Marinhs, 1749-077 Lisbon, Portugal; Universidade do Algarve, CCMAR - Centre of Marine Sciences, Campus de Gamelas, 8005-139 Faro, Portugal; University of Bremen, MARUM, Center for Marine Environmental Sciences, 28359 Bremen, Germany; catarina.cavaleiro@ipma.pt

Francisco de la Granda
Federal Maritime and Hydrographic Agency, 20359 Hamburg, Germany; Francisco.delagranda@bsh.de

Nicolas Villacieros-Robineau
Université Pierre et Marie Curie, LOCEAN-IPSL, 75005 Paris, France; nvrobineau@gmail.com

Fernando Alonso-Pérez
Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), E-36208 Vigo, Spain; fernando@iim.csic.es

Maria Froján
Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), E-36208 Vigo, Spain; mariafrojan@iim.csic.es

Belen Arbones
Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), E-36208 Vigo, Spain; belen@iim.csic.es

Celia Santos
Instituto Português do Mar e da Atmosfera (IPMA), Div. Geologia e Georecursois Marinhs, 1749-077 Lisbon, Portugal; Universidade do Algarve, CCMAR - Centre of Marine Sciences. Campus de Gamelas, 28359 Bremen, Germany; celia.neto@ipma.pt

Carmen G. Castro
Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), E-36208 Vigo, Spain; cgcastro@iim.csic.es

Fatima Abrantes
Instituto Português do Mar e da Atmosfera (IPMA), Div. Geologia e Georecursois Marinhs, 1749-077, Lisbon, Portugal; Universidade do Algarve, CCMAR - Centre of Marine Sciences, Campus de Gamelas, 8005-139 Faro, Portugal; fatima.abrantes@ipma.pt

Timothy Eglinton
ETH Zurich, Department of Earth Sciences, 8092 Zurich, Switzerland; timothy.eglinton@erdw.ethz.ch

For the first time, a systematic investigation of the ecology plus the spatial and temporal variability in coccolithophore abundance and distribution in the water column was performed for the NW Iberian margin. From July 2011 to June 2012, monthly sampling was conducted from several water depths at two stations at latitude 42ºN: one offshore (350m water depth) and one nearshore (75m water depth). Total coccolithophore abundances were higher offshore. Seasonal dynamics of the water column strongly influenced coccolithophore productivity at both stations. Coccolithophore abundance was found to increase during the summer at both locations, which coincided with an upwelling regime. However, such coccolithophore blooms are normally associated with the decline of upwelling events, which results in warmer water and poor nutrient conditions. During the winter, coccolithophore abundance decreased drastically offshore with the influence of the saltier and nutrient-poor Iberian Poleward Current. In contrast, nearshore coccolithophore abundance was affected by river discharge and surface sediment resuspension, which remobilized deposited coccoliths from surface sediments and masked the species composition and vertical distribution of the autochthonous coccolithophore assemblages in the water column. Coccolithophore assemblages at both locations are dominated by Emiliania huxleyi, followed by small Gephyrocapsa spp., G. oceanica, and Florisphaera profunda. Species absolute abundances and their strong seasonal signal lead to the identification of different assemblages offshore: (1) the “summer regime assemblage” that is favored by upwelling conditions and composed of E. huxleyi and small Gephyrocapsa spp. within the first 100m, and G. oceanica, C. pelagicus ssp. braarudii, and Oolithotus fragilis between 150–300m and (2) the “winter regime assemblage”, which is characterized by a lower abundance of E. huxleyi and small Gephyrocapsa spp., and R. clavigera within the first 100m, and F. profunda, G. flabellatus, and O. fragilis between 150–300m.