Coccolithophore export fluxes in the NE Mediterranean as revealed from different sediment trap records

Elisavet Skampa
National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Panepistimiopolis, 157 84 Athens, Greece; skampaelisavet@gmail.com

Maria V. Triantaphyllou
National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Panepistimiopolis, 157 84 Athens, Greece; mtriant@geol.uoa.gr

Margarita D. Dimiza
National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Panepistimiopolis, 157 84 Athens, Greece; mdimiza@geol.uoa.gr

Elisa Malinverno
Università degli Studi di Milano-Bicocca, Dipartimento di Scienze dell’Ambiente e della Terra, 20126 Milano, Italy; elisa.malinverno@unimib.it

Odysseas A. Archontakis
National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Panepistimiopolis, 157 84 Athens, Greece; odysseas67@windowslive.com

Karl-Heinz Baumann
University of Bremen, Department of Geosciences, 28334 Bremen, Germany; baumann@uni-bremen.de

Constantine Parinos
Hellenic Centre for Marine Research, Institute of Oceanography, 190 13 Anavyssos, Attiki, Greece; ksparinos@hcmr.gr

Spyros Stavrakakis
Hellenic Centre for Marine Research, Institute of Oceanography, 190 13 Anavyssos, Attiki, Greece; stavvak@hcmr.gr

Alexandra Gogou
Hellenic Centre for Marine Research, Institute of Oceanography, 190 13 Anavyssos, Attiki, Greece; agogou@hcmr.gr

Coccolithophore export was investigated in three eastern Mediterranean sediment trap sites: the mesotrophic northern Aegean Sea (500m; October 2014–November 2015), the ultra-oligotrophic southern Aegean/Cretan Sea (1,500m; December 2014–December 2015), and the oligotrophic SE Ionian Sea (2,000m; October 2014–September 2015).

Coccolithophore fluxes (coccospheres m⁻² day⁻¹) revealed a highly seasonal pattern with a peak during February to March (northern Aegean: max. 8.56 × 10⁶, Ionian Sea: max. 0.81 × 10⁶, Cretan Sea: max. 3.37 × 10⁶). The flux maxima occurred during water column mixing and coincided with an interval of decreased sea surface temperatures (SST). Coccosphere fluxes were dominated (on average) by Emiliania huxleyi (75% in the northern Aegean, ~50% in Cretan and Ionian Seas), followed by Syracosphaera spp. (14% in the northern Aegean, ~10% in Cretan and Ionian Seas), and Algirosphaera robusta (>45% during February in the Ionian Sea). Umbilicosphaera sibogae was the most important of the minor species, particularly in the Cretan Sea (13% in average, max. flux 1.01 × 10⁶ coccospheres m⁻² day⁻¹ in March). Northern Aegean total coccosphere flux was considerably higher due to the prominent seasonal peak of E. huxleyi (>95% in January).

A comparable seasonal signal in coccosphere fluxes occurred within a previously sampled time series at the same locations. However, a trend towards increasing fluxes (coccospheres m⁻² day⁻¹) was observed (northern Aegean Sea in 2011: max. 0.29 × 10⁶, Cretan Sea in 2001: max. 0.4 × 10⁶). Overall, the fluxes were strongly dependent on the regeneration of nutrients by winter vertical mixing in the northern Aegean and/or the fertilizing influence of episodic dust input events in the southern Aegean and Ionian Seas (e.g., Triantaphyllou et al., 2004; Stavrakakis et al., 2013; Dimiza et al., 2015).

Using the SEM, a comparative study of trap samples from the SE Ionian and Cretan Seas was made of E. huxleyi calcification and the effect on its morphology. Higher relative tube width values (~0.3 in the Cretan Sea, >0.35 in the Ionian) occurred when increased coccolithophore productivity time intervals coincided with SST minima, which matches the seasonal calcification pattern found in the NE Mediterranean (Triantaphyllou et al., 2010).

References

